Pada halaman ini akan dibahas mengenai Distribusi Binomial. Semua informasi ini kami rangkum dari berbagai sumber. Semoga memberikan faedah bagi kita semua.
Distribusi binomial muncul ketika percobaan bernoulli diulang sebanyak \(n\) kali. Setiap pengulangan, peluang sukses selalu sama yaitu \(p,\) begitu juga dengan peluang gagal yaitu \(1-p.\) Setiap pengulangan bebas terhadap pengulangan berikutnya.
Dalam suatu pertandingan, peluang Ronaldo dapat mencetak gol adalah 5/6, jika ronaldo diberi kesempatan menendang sebanyak 5 kali. Tentukan besar peluang Ronaldo mencetak 4 kali gol!
Jawab
Diketahui \(p=\frac{5}{6}\) dan \(n=5\) maka \(P(X=4\) adalah \[ \begin{aligned} P(X=x)&=\binom{n}{x}p^x \left(1-p\right)^{n-x}\\ P(X=4)&=\binom{5}{4}\left(\frac{5}{6}\right)^4 \left(1-\frac{5}{6}\right)^{5-4}\\ &=0\text{,}40 \end{aligned} \] Contoh Soal #2
Misalkan sebuah mata uang memiliki dua sisi yaitu Muka (M) dan Belakang (B) yang akan diundi sebanyak 6 kali. Berapakah peluang pada undian akan muncul:
a. Ada dua sisi M
b. Ada lebih dari dua sisi M
Jawab
a. Ada dua sisi M
Diketahui peluang muncul M untuk satu kali pelemparan adalah 1/2 \((p=12)\) dan banyaknya pelemparan adalah 6 kali \((n=6).\) Peluang muncul dua sisi M adalah \[ \begin{aligned} P(X=2)&=\binom{n}{x}p^x(1-p)^{n-x}\\ &=\binom{6}{2}\left(\frac{1}{2}\right)^2\left(1-\frac{1}{2}\right)^{6-2}\\ &=\frac{6!}{2!(6-2)!}\frac{1}{2^2}\frac{1}{2^4}\\ &=\frac{15}{64} \end{aligned} \] b. Ada lebih dari dua sisi M
Peluang muncul besar dari dua sisi M adalah \[ \begin{aligned} P(X>2)&=P(X=3)+P(X=4)+P(X=5)+P(X=6)\\ &=\frac{20}{64}+\frac{15}{64}+\frac{6}{64}+\frac{1}{64}\\ &=\frac{21}{32} \end{aligned} \]
Fungsi Padat Peluang
Distribusi binomial merupakan distribusi peluang diskret dengan fungsi peluangnya adalah \[ f(x)= \begin{cases} \displaystyle\binom{n}{x}p^x\left( 1-p \right)^{n-x}&\;\;\; x=1,2,...,n\\ \\ 0&\;\;\;\text{lainnya} \end{cases} \] dimana \(p\) adalah peluang sukses, \(n\) adalah banyaknya pengulangan dan \(x\) adalah banyaknya sukses dalam \(n\) kali pengulangan. Selain itu notasi \(\displaystyle\binom{n}{x}\) merupakan koefisien binomial, dimana \[ \binom{n}{x}=\frac{n!}{x!(n-x)!}. \]Fungsi Distribusi Kumulatif
Fungsi distribusi kumulatif distribusi binomial adalah \[ F(x) = \sum_{k=0}^{x} \binom{n}{k} p^k(1-p)^{n-k} \qquad x=1,2,...,n \]Mean
Rata-rata (Mean) distribusi binomial adalah \[ E(X)=np. \] Bukti: \[ \begin{aligned} E(X) &= \sum_{x=0}^n xf(x)\\ &=\sum_{x=0}^n x\frac{n!}{x!(n-x)!}p^x(1-p)^{n-x}\\ &=\sum_{x=0}^n x\frac{n(n-1)!}{x(x-1)!(n-x)!}pp^{x-1}(1-p)^{n-x}\\ &=np \sum_{x=0}^n \frac{(n-1)!}{(x-1)!(n-x)!}p^{x-1}(1-p)^{n-x}\\ &=n\end{aligned} \]Varian
Varian distribusi binomial adalah \[ Var(X) = np(1-p). \] Bukti:\[ \begin{aligned} Var(X)&=E\left(\left[X-E(X)\right ]^2\right )\\ &= E(X^2)-\left [E(X) \right ]^2 \end{aligned} \] Untuk menyelesaikannya, tentukan bagian yang belum diketahui terlebih dahulu, yaitu \( E(X^2).\) \[ \begin{aligned} E(X^2)&= E(X^2)-E(X)+E(X)\\ &=E(X^2-X)+E(X)\\ &=E\left(X(X-1)\right)+E(X) \end{aligned} \] Selesaikan \(E\left(X(X-1) \right ).\) \[ \begin{aligned} E(X(X-1))&= \sum_{x=0}^n x(x-1)f(x) \\ &= \sum_{x=0}^n x(x-1)\frac{n!}{x!(n-x)!}p^x(1-p)^{n-x} \\ &= \sum_{x=0}^n x(x-1)\frac{n(n-1)(n-2)!}{x(x-1)(x-2)!(n-x)!}p^2p^{x-2}(1-p)^{n-x} \\ &= n(n-1)p^2 \sum_{x=0}^n \frac{(n-2)!}{(x-2)!(n-x)!}p^{x-2}(1-p)^{n-x} \\ &= n^2p^2-np^2 \end{aligned} \] Selanjutnya, \[ \begin{aligned} E(X^2) &= n^2p^2-np^2+np\\ &= n^2p^2+np(1-p) \end{aligned} \] Dengan demikian, \[ \begin{aligned} Var(X) &= n^2p^2+np(1-p) (np)^2\\ &= np(1-p) \end{aligned} \]Fungsi Pembangkit Momen (MGF)
Fungsi pembangkit momen distribusi bernoulli adalah \[ M_x(t)=\left(1-p+pe^t\right)^n. \] Bukti: \[ \begin{aligned} M_x(t) &= E(e^{tx}) \\ &=\sum_{x=0}^{n}e^{tx}f(x) \\ &=\sum_{x=0}^{n}e^{tx}\binom{n}{x}p^x \left( 1-p \right)^{n-x} \\ &=\sum_{x=0}^{n}e^{tx}\frac{n!}{x!(n-x)!}p^x \left( 1-p \right)^{n-x} \\ &=\sum_{x=0}^{n}\frac{n!}{x!(n-x)!}{(pe^t)}^x \left( 1-p \right)^{n-x} \end{aligned} \] Persamaan tersebut dapat diselesaikan dengan menggunakan teorema binomial newton, sehingga \[ \begin{aligned} M_x(t)&={(pe^t+1-p)}^{x+n-x}\\ &={(1-p+pe^t)}^n \end{aligned} \] Selanjutnya dapat diperoleh juga \[ \begin{aligned} M'_x &= npe^t \left ( 1-p+pe^t \right )^{n-1} \\ M''_x &= n(n-1){(pe^t)}^2{(1-p+pe^t)}^{n-2}\\ &\;\;\;\;+ npe^t \left ( 1-p+pe^t \right )^{n-1} \end{aligned} \] Momen-momen mentahnya (raw moments) adalah \[ \begin{aligned} \mu'_1 &= np \\ \mu'_2 &= np(1-p+np)\\ \mu'_3 &= np(1-3p+3np+2p^2-3np^2+n^2p^2)\\ \mu'_4 &= np(1-7p+7np+12p^2-18np^2+6n^2p^2\\ &\;\;\;\;-6p^3+11np^3-6n^2p^3+n^3p^3 \end{aligned} \] dan momen-momen pusat central moments\[ \begin{aligned} \mu_1 &= np \\ \mu_2 &= np(1-p)\\ \mu_3 &= np(1-p)(1-2p)\\ \mu_4 &= np(1-p)\left [ 3p^2(2-n)+3p(n-2)+1 \right ] \end{aligned} \]Kemencengan (Skewness)
Kemencengan (Skewness) dari distribusi binomial adalah \[ \displaystyle\gamma_1 = \frac{1-2p}{\sqrt{np(1-p)}}. \] Bukti: \[ \begin{aligned} \gamma_1&= E\left(\left[\frac{X-E(X)}{\sqrt{Var(X)}}\right]^3\right)\\ &=\frac{\mu_3}{\sqrt{\mu_2^3}}\\ &=\frac{(1-2p)}{\sqrt{np(1-p)}} \end{aligned} \]Keruncingan (kurtosis)
Keruncingan (kurtosis) dari distribusi binomial adalah \[ \displaystyle\gamma_2 = \frac{6p^2-6p+1}{np(1-p)} \] Bukti: \[ \begin{aligned} \gamma_2 &= E\left(\left[\frac{X-E(X)}{\sqrt{Var(X)}}\right ]^4\right )\\ &= \frac{\mu_4}{\sqrt{\mu_2^4}}\\ &= \frac{3p^2(2-n)+3p(n-2)+1}{\sqrt {np(1-p)}}+3\\ &= \frac{6np^2-6p+1}{np(1-p)} \end{aligned} \]Fungsi Karakteristik
\[ \varphi_x(t)=\left(1-p+pe^{it}\right)^n \]Fungsi Pembangkit Peluang
\[ G_x(t)=\left(1-p+p^t \right)^n \]Hubungan dengan Fungsi Beta
Peluang yang mengandung banyak sukses dari \(n\) observasi dari distribusi binomial adalah \[ \begin{aligned} P&=\sum_{k=x+1}^{n}\binom{n}{k}p^k{(1-p)}^{n-k}\\ &=I_p(x+1,n-x) \end{aligned} \] dimana \[ I_x(a,b)\equiv\frac{B(x;a,b)}{B(a,b)}. \] \(B(a,b)\) adalah fungsi beta (beta function) dan \(B(x;a,b)\) adalah fungsi beta tak lengkap (incomplete beta function).Soal dan Pembahasan
Contoh Soal #1Dalam suatu pertandingan, peluang Ronaldo dapat mencetak gol adalah 5/6, jika ronaldo diberi kesempatan menendang sebanyak 5 kali. Tentukan besar peluang Ronaldo mencetak 4 kali gol!
Jawab
Diketahui \(p=\frac{5}{6}\) dan \(n=5\) maka \(P(X=4\) adalah \[ \begin{aligned} P(X=x)&=\binom{n}{x}p^x \left(1-p\right)^{n-x}\\ P(X=4)&=\binom{5}{4}\left(\frac{5}{6}\right)^4 \left(1-\frac{5}{6}\right)^{5-4}\\ &=0\text{,}40 \end{aligned} \] Contoh Soal #2
Misalkan sebuah mata uang memiliki dua sisi yaitu Muka (M) dan Belakang (B) yang akan diundi sebanyak 6 kali. Berapakah peluang pada undian akan muncul:
a. Ada dua sisi M
b. Ada lebih dari dua sisi M
Jawab
a. Ada dua sisi M
Diketahui peluang muncul M untuk satu kali pelemparan adalah 1/2 \((p=12)\) dan banyaknya pelemparan adalah 6 kali \((n=6).\) Peluang muncul dua sisi M adalah \[ \begin{aligned} P(X=2)&=\binom{n}{x}p^x(1-p)^{n-x}\\ &=\binom{6}{2}\left(\frac{1}{2}\right)^2\left(1-\frac{1}{2}\right)^{6-2}\\ &=\frac{6!}{2!(6-2)!}\frac{1}{2^2}\frac{1}{2^4}\\ &=\frac{15}{64} \end{aligned} \] b. Ada lebih dari dua sisi M
Peluang muncul besar dari dua sisi M adalah \[ \begin{aligned} P(X>2)&=P(X=3)+P(X=4)+P(X=5)+P(X=6)\\ &=\frac{20}{64}+\frac{15}{64}+\frac{6}{64}+\frac{1}{64}\\ &=\frac{21}{32} \end{aligned} \]
Tidak ada komentar:
Posting Komentar