Hukum Kepler


Pada halaman ini akan dibahas mengenai Hukum Kepler. Semua informasi ini kami rangkum dari berbagai sumber. Semoga memberikan faedah bagi kita semua.

Gambar 1
Lebih dari setengah abad yang lalu sebelum Newton mengemukakan ketiga hukum gerak dan gravitasi universal seorang astronomi berkebangsaan Jerman, Johanes Kepler (1571 – 1630) telah menulis sebuah uraian mendalam tentang gerakan planet-planet mengelilingi Matahari: tiga temuan empiris yang kini kita sebut sebagai hukum-hukum gerak planet Kepler (Kepler’s laws of planetary motion). 
Gambar 2
Gambar 3








Hukum-hukum ini dirangkumkan sebagaimana di bawah ini:
 
Hukum Pertama Kepler:  
Lintasan orbit setiap planet mengelilingi matahari berbentuk sebuah elips dengan matahari berada pada salah satu titik fokus elips ini (gbr.2).

Hukum Kedua Kepler
Setiap planet bergerak sedemikian rupa sehingga sebuah garis lurus khayal yang ditarik dari matahari ke salah satu planet akan menyisir/menyapu luas bidang juring (irisan elips) yang sama dalam jangka waktu yang sama (gbr.3).

Hukum Ketiga Kepler
Ratio kuadrat periode T dari sembarang dua planet yang mengelilingi Matahari adalah sama dengan ratio nilai pangkat tiga jarak rata-rata kedua planet itu dari Matahari. [Jarak rata-rata dari Matahari ini sama dengan sumbu semi-mayor s, yang didefinisikan sebagai setengah dari sumbu mayor (sumbu panjang) orbit elips (= setengah jarak dari titik dekat planet N dan titik jauh planet M ke Matahari), seperti pada gbr.01]. Maka jika T1 dan T2 merepresentasikan periode-periode (jangka waktu yang diperlukan untuk mengelilingi Matahari satu kali) untuk sembarang dua planet, dan s1 dan s2 merepresentasikan jarak rata-rata mereka dari Matahari, maka
Kita dapat menuliskan kembali hukum Kepler sebagai
Penurunan hukum III Kepler
Gambar 4


Kita akan mencoba menurunkan hukum III Kepler untuk kasus khusus lintasan orbit yang melingkar (bulat). (Sebagian besar planet memiliki orbit yang bentuknya mendekati lingkaran). Pertama-tama, kita menuliskan hukum II Newton sebagai ΣF = ma. Untuk F kita menggunakan gaya gravitasi antara Matahari dengan sebuah planet bermassa mp, dan a menggunakan percepatan sentripetal (v2/r). Kita mengasumsikan bahwa Matahari, MS, jauh lebih besar daripada planet-planetnya. Maka,
Di sini, m1 adalah massa planet tersebut, r1 adalah jarak dari planet dimaksud ke Matahari, dan v1 adalah kecepatan rata-rata planet itu di dalam lingkaran orbitnya; MS adalah massa Matahari (Sun), karena gaya tarik gravitasi oleh Matahari yang dipertahankan planet-planet tetap dalam lintasan orbitnya masing-masing periode T1 dari planet yang di maksud adalah jangka waktu yang dibutuhkan planet itu untuk menjalani satu kali orbit penuh, yang adalah jarak yang sama dengan keliling lintasan orbit planet tersebut, yaitu 2πr1. Sehingga,
Kita subtitusikan v1 ke dalam persamaan sebelumnya, menjadi
Kita kembali menyusunnya menjadi
Kita menurunkan persamaan ini untuk planet 1 (misalkan, Merkurius). Maka untuk planet lainnya (Misalkan, Venus) yang juga mengorbit Matahari:
Di mana T2 dan r2 secara berturut-turut, adalah periode dan jari-jari orbit untuk planet kedua. Karena sisi kanan dari kedua persamaan terakhir, persamaan (3) dan (4) adalah sama, maka kita mendapatkan
Atau dengan menyusunnya kembali menjadi
Yang tidak lain adalah hukum III Kepler. Persamaan (3) dan (5) juga berlaku untuk orbit elips jika kita mengganti r dengan sumber semimayor s.
Pengukuran orbit sebagai planet secara akurat menunjukkan bahwa planet-planet sesungguhnya tidak mematuhi hukum Kepler secara sempurna. Newton menyadari bahwa hal ini seharusnya dapat diperkirakan karena setiap planet akan mengalami gaya tarik bukan hanya oleh Matahari namun juga (walaupun kecil) oleh planet-planet lainnya. Penyimpangan semacam ini atau disebut gangguan (perturbation), pada orbit Saturnus merupakan salah satu petunjuk yang membantu Newton merumuskan hukum gravitasi universalnya, bahwa semua benda saling tarik menarik secara gravitasionel.

Pusat lain dari Hukum Kepler
Penurunan persamaan (3), hukum III Kepler, membandingkan dua planet yang berevolusi mengelilingi Matahari. Tapi penurunan ini cukup bersifat umum untuk diaplikasikan kepada sistem yang lain. Sebagai contoh, kita dapat mengaplikasikan persamaan (3) untuk membandingkan sebuah satelit buatan manusia dengan bulan kita, keduanya berevolusi mengelilingi bumi (kemudian MS pada persamaan (3) kita ganti dengan ME, massa bumi). Atau kita dapat mengaplikasikannya persamaan (3) untuk membandingkan dua bulan yang berevolusi mengelilingi Jupiter. Tapi, hukum III Kepler, persamaan (3), hanya dapat diaplikasikan kepada objek yang mengelilingi pusat penarik yang sama. Jangan, menggunakan persamaan (3) untuk membandingkan misalnya orbit bulan mengelilingi Bumi dengan Mars mengelilingi Matahari: keduanya tergantung pada pusat penarik yang berbeda, oleh karena ini tidak dapat dibenarkan. (#YV#).
Dalam:

Share:


Anda Juga Bisa Baca

Tidak ada komentar:

Posting Komentar